jeśli tu jesteś, to znaczy, że wiesz, co oznacza równanie. Na tym świecie istnieją nieskończone równania. Zrozumienie ich zajmie nam dużo czasu, jeśli ich nie skategoryzujemy. Dlatego matematycy kategoryzowali równania w różnych typach, aby były łatwiejsze do zrozumienia. Największą zaletą kategoryzacji równań jest to, że łatwo możemy sobie z nimi poradzić. Gdy znajdziemy Typ równania, możemy łatwo je rozwiązać, aby znaleźć pierwiastki lub rozwiązania. Na przykład, jeśli widzisz równanie takie jak to
, pierwszą rzeczą, którą zrobisz, jest zrozumienie równania. Wiesz, że jest to równanie kwadratowe i następną rzeczą, którą pomyślisz, jest to, jak rozwiązać to równanie kwadratowe? Za pomocą łamania średnioterminowego lub wzoru kwadratowego. Cóż, to jest historia dla innego bloga, ale wiemy, że musisz się zastanawiać, co to jest Równanie kwadratowe? Czytaj dalej, aby się dowiedzieć.
sprawdź tutaj dla wybitnych nauczycieli matematyki w pobliżu mnie.
- równania wielomianowe
- rodzaje równań wielomianowych
- 1.1 Równania liniowe
- 1.2 Równania kwadratowe
- 1.3 równanie wielomianowe
- niekompletne równania kwadratowe
- 1.3 równania sześcienne
- 1.4 równania kwarcowe
- równania Biquadratyczne
- równania wielomianowe racjonalne
- irracjonalne równania wielomianowe
- Transcendental Equations
- 4.1 Exponential Equations
- 4.2 równania logarytmiczne
- 4.3 równania trygonometryczne
równania wielomianowe
równania wielomianowe mają postać P(x) = 0, gdzie P(x) jest wielomianem. Te typy równań są również znane jako równania równoważne, ponieważ obie strony równania mają to samo rozwiązanie. Ponadto w równaniu może być więcej niż jeden nieznany. Słowo poly oznacza więcej niż jeden, a nomial oznacza liczbę terminów. Istnieją trzy rodzaje równań wielomianowych.
rodzaje równań wielomianowych
1.1 Równania liniowe
równania liniowe są równaniami typu , z
, lub jakiekolwiek inne równanie, w którym terminy mogą być obsługiwane i uproszczone do równania o tej samej postaci. Na przykład:
Introducing
on both sides of the equation:
Wykres równania liniowego zawsze będzie linią prostą. Stopień równania liniowego będzie zawsze
.
1.2 Równania kwadratowe
równania kwadratowe są równaniami typu
, z. Równanie kwadratowe zawsze będzie miało 2 pierwiastki. Można nawet przekształcić inne równania w równania kwadratowe, nazywamy je „równaniami biquadratycznymi”. Jeśli narysujesz Wykres równania kwadratowego, okaże się, że wykres jest wykresem w kształcie litery U. Wykres zawsze będzie miał punkt maksymalny lub minimalny, a ten sam punkt jest również znany jako punkt symetrii. Oznacza to, że w tym momencie, jeśli połączysz obie strony, będą nakładać się na siebie. Stopień równania kwadratowego będzie zawsze równy.
Uzyskaj informacje o nauce matematyki w Wielkiej Brytanii.
1.3 równanie wielomianowe
w tym momencie musisz się zastanawiać, że badamy wielomian i dlaczego wielomian mA Typ o tej samej nazwie „wielomian”? Jeśli równanie jest równe liniowemu lub kwadratowemu, nazywamy je wielomianem. Na przykład
, ten typ równania jest równaniem wielomianowym. Stopień tych typów równań będzie zawsze większy niż. Równanie sześcienne, podobnie jak równanie kwartalne, jest rodzajem równania wielomianowego.
niekompletne równania kwadratowe
równanie niekompletne to rodzaj równania kwadratowego. Jeśli wartość b lub C (w niektórych przypadkach, nawet oba) są równe zero, równanie wynikowe będzie równaniem niekompletnym. Poniżej kilka przykładów niepełnych równań:
rozwiązywanie niekompletnych równań jest bardzo proste i nie wymaga zaawansowanej matematyki (lub różnych formuł) do rozwiązania.
1.3 równania sześcienne
równania sześcienne to równania typu
, z. Stopień równania sześciennego będzie zawsze równy.
1.4 równania kwarcowe
równania kwarcowe są równaniami typu ,
. Ponadto stopień wielomianu równania kwartycznego będzie zawsze równy.
równania Biquadratyczne
równania biquadratyczne są równaniami kwartycznymi, które nie mają terminów o nieparzystym stopniu. Zasadniczo są to równania wielomianowe o wysokim stopniu, ale są konwertowane do równania kwadratowego, co ułatwia rozwiązanie.
, z.
równania wielomianowe racjonalne
równania wielomianowe racjonalne mają postać
, gdzieisą wielomianami. Słowo racjonalne oznacza stosunek, co oznacza racjonalne równania wielomianowe zawsze będą w ułamku. Ponadtoinie będą równe zeru.
irracjonalne równania wielomianowe
równania irracjonalne to takie, które mają co najmniej wielomian Pod znakiem rodnika.
Transcendental Equations
The transcendental equations are equations that include transcendental functions.
4.1 Exponential Equations
Exponential equations are equations in which the unknown appears in the exponent.
4.2 równania logarytmiczne
równania logarytmiczne są równaniami, w których nieznane jest dotknięte logarytmem.
4.3 równania trygonometryczne
równania trygonometryczne są równaniami, w których Nieznany jest wpływ funkcji trygonometrycznej.
dowiedz się więcej od korepetytorów matematyki w mojej okolicy na Superprof.